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Purpose

GPS positioning is done by receiving positions and time from different satellites in space.
The true range between the receiver and the satellite is determined using timing information.
ie by denoting tl the time received by the lth satellite, c the speed of light in a vacuum, and t
the true time of the signal reception :

true range := Rl = c(t − tl) (1)

By knowing the true ranges between the receiver and different satellites, one can be lo-
cated in space. It is assumed that the data received by satellites is accurate, but unfortunately
the timing measurements of the receiver are often inaccurate1 and have to be corrected. The
range measured by the receiver is an error-induced pseudo-range.

The motivation of this project is to develop algorithms that gives an accurate
localization using the error-induced pseudo-range measured by the receiver.

Notation
All positions are given with respect to a geostationary reference Cartesian coordinate

system located at the center of the earth. Distances are given in units of Earth Radii (1ER =
6.370km). Since the positioning relies on 3 degrees of freedom for the unknown receiver
location, and 1 degree of freedom for the receiver’s clock bias b, we need measurements from
4 satellites in order to have enough data to solve the problem.

Sl = (sl,1, sl,2, sl,3)T is the position of the lth satellite, l = 1, 2, 3, 4; S = (s1, s2, s3)T is
the position of the receiver. For a fixed satellite location Sl, the true range Rl from the satellite
located at Sl is a nonlinear function of the receiver location S and is given by :

Rl(S) = ||S − Sl|| =
√

(S − Sl)T (S − Sl), l = 1, ..., 4 (2)

The errors in the pseudo-range are induced by the receiver’s clock bias b = c(t′ − t), with t′ the
reception time measured by the receiver, and some noise νl ∼ N(0, σ2) induced by atmospheric
inconsistencies. The pseudo-range is then given by :

yl = Rl(S) + b + νl, l = 1, ..., 4 (3)
1Satellites are equipped with expensive atomic clocks, and their orbit is accurately defined, while commercial

GPS units are equipped with a cheap clock to keep the prices low.
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For problem notation, we define x =
(

S
b

)
∈ R4, and h(x) =


R1(S) + b
R2(S) + b
R3(S) + b
R4(S) + b

. So the

pseudo-range equation (3) becomes :

yl = hl(x) + νl, l = 1, ..., 4 (4)

For simplification purposes, we ignore the noise, ie νl = 0.
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Procedure

Step 1 : Linearization
Since we ignore the noise, the pseudo-range equation becomes yl = hl(x), l = 1, ..., 4.

This is a nonlinear inverse problem. The first step would be to linearize the pseudo-range
equation, ie linearize h.

In this first step, we assume that we know a nominal receiver location Ŝ and clock bias
b̂, so we linearize the pseudo-range equation about the nominal values. Let ∆x := x − x̂. By
doing a Taylor series expansion of h around x̂ = (ŜT , b̂)T we have :

y(x) = h(x) = h(x̂ + ∆x) = h(x̂) + ∂h(x̂)
∂x

∆x + higher order terms, (5)

Let ∆y := h(x) − h(x̂) = y − h(x̂), and H(x̂) := ∂h(x̂)
∂x the jacobian matrix of h(x).

Then by getting rid of higher order terms, the pseudo-range equation (3) becomes :

∆y ≈ H(x̂)∆x (6)

which is a linear inverse problem to solve.

Step 2 : Algorithm Development
To compute an accurate GPS position, it is necessary to implement optimization algo-

rithms in the receiver. We will derive two algorithms : the gradient descent (aka. steepest
descent, aka naive) and the Gauss-Newton (aka. Gaussian) gradient descent algorithms. These
algorithms are formulated to minimize the loss function :

l = 1
2

||y − h(x)||2 (7)

Step 3: Simulation
In order to test our algorithms, we implement them into Matlab, for it is a powerful

development interface to compute, test, and compare our algorithms.
For our initial estimate of the vehicle location, we pick S0 to be far from the current

position (ie about 2330 km off of the actual location).
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Since for testing purposes, we only have access to satellite positions, but no timing data,
we need to generate the ”measured” pseudo-range from the exact location, for later use.

We can then apply our algorithm into Matlab to generate the best estimate of the
receiver’s location.
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Results

Step 1
Recall from equation (5) that the linearization of y(x) depends on the linearization of

h(x) :

H(x) := ∂h(x)
∂x

=


∂h1(x)

∂x
|

∂h4(x)
∂x

 ,
∂hl(x)

∂x
= (∂Rl(S)

∂S
,

∂b

∂b
) = ((S − Sl)T

Rl(S)
, 1)

This linearization depends on the linearization of the true range R(S) : ∂Rl(S)
∂S = (S−Sl)T

Rl
.

This is the unit vector pointing from the lth satellite to the receiver. The higher order terms
are all divided by Rl(S). So as the true range increases, the higher order terms tend to 0.
Therefore the linearization of the pseudo-range equation (6) becomes more accurate.

Step 2
To minimize the loss function (7) from a current estimation xk of the optimal solution

x∞, we need to iteratively follow the direction of the negative gradient of l. This gives the
direction of the steepest descent.

Gradient Descent
The gradient of l estimated at x̂ is given by :

∇xl(x̂) = −∂h(x̂)
∂x

(y − h(x̂)) = −HT (x̂)(y − h(x̂)) (8)

An improved estimation xk+1 of the current estimate xk can be computed by taking
small step sizes αk > 0 into the direction of −∇xl(xk). This gives the naive gradient descent
algorithm :

xk+1 = xk − αk∇xl(xk) = xk + αkHT (xk)(y − h(xk)) (9)
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Gauss-Newton Gradient Descent
The Gauss-Newton method also tries to minimize the loss function, but re-linearizes h(x)

iteratively about the current estimates xk. This gives the loss function :

lgauss(xk) = 1
2

||y − hlinearized(xk)||2 = l(∆x) = 1
2

||∆y − H(xk)∆x||2 (10)

where ∆y = y − h(xk), ∆x = x − xk. The minimum of this loss function provides a least
square solution to the linearized inverse problem (6). Finding the correction of the current
estimate xk is equivalent to finding the solution ∆x, using the pseudo-inverse H+ of H:

∆x = H+(xk)∆y = H+(xk)(y − h(xk))

This yields the algorithm :

xk+1 = xk + ∆x = xk + H+(xk)(y − h(xk))

This provides an improved estimate xk+1 of the optimal solution x∞ from our current estimate
xk. We add a constant αk > 0 to take small steps, so to control convergence. Furthermore,
in our problem, H is a 4 by 4 matrix of full rank. Therefore H−1 exists. This gives the
Gauss-Newton gradient descent algorithm :

xk+1 = xk + αk∆x = xk + αkH−1(xk)(y − h(xk)) (11)

Step-Size Determination
The choice of step-size is critical for a fast convergence. A constant value 0 < αk < 1

proves to be reliable for both algorithms. To determine the best value α, we plotted the
convergence speed versus α for both algorithms in figures page 10.

We want to pick the step sizes that optimize the convergence rate. Note that the naive
algorithm returns NaN if α > 0.41, and the Gaussian algorithm returns NaN if α < 0.5.
Therefore, it is obvious from the figures to select α = 0.3 for the naive algorithm, and α = 1
for the Gaussian algorithm.

Termination Criteria
Theoretically, one should iterate an infinite number of times to converge to the exact

solution :
xtrue := x∞ = lim

k→∞
xk

But for obvious computational reasons, the algorithm should be stopped either once a close
enough approximation is found, or whether it takes too many iterations. The algorithms are
implemented in ER-units, so by choosing an error margin of 1m, this corresponds to an error
margin of 1.57e − 7ER.

For such precision, the Gauss-Newton algorithm converges almost instantly, while the
naive gradient descent takes thousands of steps. We define the maximum number of iterations
to be 300,000 for the naive algorithm, and 1,000 for the Gaussian.

6



Pierre MOREAU GPS Algorithms ECE 174 project 2

Step 3
In a first phase, we pretend to know the true receiver’s position to compute the missing

pseudo-range data. We will later use our knowledge of the true position to compare our results.
In a second phase, we pick an estimate of the solution x0, and apply the optimization

algorithms to converge to the receiver’s true position, using the ”measured” pseudo-range data.

We plotted in page 11 and page 12 the position prediction error and the bias prediction
error, on a log scale. The position prediction error is close to the evaluation of the loss function.
The table 1 compares the outputs and runtimes of both algorithms. The steepest descent
algorithm takes tens of thousands of iterations to converge within 1m of the true position,
while the Gaussian algorithm converges in only 3 steps. Moreover, the naive algorithm has an
error in mm, while the Gaussian algorithm has an error in µm. So the Gaussian algorithm has
converged closer to the true solution, despite the same termination margin parameter. This is
due to a greater α value.

Those results are greatly in favor of the Gauss-Newton algorithm. Indeed, this algorithm
converges in over 7,000x less iterations. It is important to note that, however, it does not
converge 7,000x faster. The Gauss-Newton iteration steps require more computation that the
naive gradient algorithm, because the computation of H−1 is very expensive. This makes the
convergence of the Gaussian algorithm only 18x faster.

algorithm α convergence rate runtime position error bias error
naive gradient descent 0.3 22 328 iterations 2.7 s 1 e-3 m 7.214 e-4 m

Gaussian gradient descent 1 3 iterations 0.15 s 2.873 e-6 m 2.991 e-6 m

Table 1: Optimization algorithms results comparison

7



Conclusion

The goal was to compute optimization algorithms in order to give an accurate estimate
the current position of a common GPS receiver.

When implementing the steepest descent algorithm, or the Gauss-Newton gradient de-
scent algorithm in the absence of noise, we are able to find a very accurate location of the
receiver. Even though the Gaussian steps involve more complicated computations, the greatly
reduced number of steps for convergence makes it 18x more efficient than the naive gradient
descent algorithm.

One should note that the unreasonably good accuracy of the results is only due to the
noiseless computation of the synthetic data. In the real world, modeling errors, represented
in the noise, greatly affects the results. A way to improve those results is to take multiple
measurements from the satellites and find the Maximum Likelihood Estimate (MLE) for x.

8



Appendices

9



Pierre MOREAU GPS Algorithms ECE 174 project 2

Step 2

Figure 1: Naive Gradient Descent : convergence vs α
The results of the algorithm are NaN if α > 0.41. The best choice is α = 0.3.

Figure 2: Gaussian Gradient Descent : convergence vs α
The results of the algorithm are NaN if α < 0.5. The best choice is α = 1.
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Step 3

Figure 3: Convergence of the naive gradient descent algorithm on log scale
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Figure 4: Convergence of the Gaussian gradient descent algorithm on log scale
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